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Abstract: Contradiction between Hawking’s semi-classical arguments and the string the-

ory on the evaporation of a black hole has been one of the most intriguing problems in

fundamental physics. A final-state boundary condition inside the black hole was proposed

by Horowitz and Maldacena to resolve this contradiction. We point out that the original

Hawking effect can also be regarded as a separate boundary condition at the event horizon

for this scenario. Here, we found that the change of the Hawking boundary condition may

affect the information transfer from the initial collapsing matter to the outgoing Hawking

radiation during the evaporation process and as a result the evaporation process itself,

significantly.
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The Hawking effect [1, 2] on the information loss in a black hole has been a serious

challenge to modern physics because it contradicts the basic principles of quantum mechan-

ics. Hawking’s semi-classical argument predicts that a process of black hole formation and

evaporation is not unitary [3]. On the other hand, there is some evidence in string theory

that the formation and the evaporation of black hole is a unitary process [4]. Nonethe-

less, the Hawking effect, discovered nearly 30 years ago, is generally accepted very credible

and considered as would be an essential ingredient of the yet unknown correct theory of

quantum gravity.

Previously, Horowitz and Maldacena (HM) proposed a final-state boundary condition

[4] to reconcile the unitarity of the black hole evaporation with Hawking’s semi-classical

reasoning. The essence of HM proposal is to impose a unique final boundary condition at

the black hole singularity such that no information is absorbed by the singularity. The final

boundary state is a maximally entangled state of the collapsing matter and the infalling

Hawking radiation. The projection of final boundary state at the black hole singularity

collapses the state into one associated with the collapsing matter and transfer the informa-

tion to the outgoing Hawking radiation. The HM model is further refined, by including the

unitary interactions between the collapsing matter and the infalling Hawking radiation [5],

with a random purification of the final boundary state [6]. One of the critical assumptions

in the HM proposal is that the internal quantum state of the black hole can be repre-

sented by a maximally entangled state of the collapsing matter and the infalling Hawking

radiation. This ansatz is important because the final state boundary condition of the HM

proposal is based on this maximally entangled internal quantum state [4, 5]. Recently, the

author proved the HM ansatz for the special case of a collapsing gravitational shell inside

the Schwarzschild black hole [7].

In the HM model, the boundary state outside the event horizon is assumed to be

the Unruh vacuum state [8, 9]. As a matter of fact, Hawking’s original discovery can

be regarded as imposing a boundary condition at the event horizon. The author would

like to denote it as the Hawking boundary condition (HBC) in contrast with the final-state

boundary condition (FBC) proposed by HM (Fig. 1). The HBC dictates that the quantum

states inside and outside the event horizon of the black hole are maximally entangled.

Significance of this scenario is that the black hole formation and the evaporation process

can be put into a unified picture by combining the HBC together with the FBC.

It would be an interesting question to ask whether the black hole evaporation process

will be affected by the boundary condition at the event horizon. The boundary condition

on the event horizon would affect the final state projection because the quantum states

inside and outside the event horizon are entangled by the HBC. The purpose of this paper is

to demonstrate that the final state boundary condition (FBC) of Horowitz and Maldacena

necessarily implies that the evaporation process depends on the boundary condition on

the horizon. The author proceeds by assuming that (a) the original vacuum outside of

a black hole evolves into a maximally entangled state on Hin and Hout and then (b) the

interior state of the black hole is also a maximally entangled state on Hin and HM , where

HM is the Hilbert space for the collapsing matter. The FBC is then applied to the latter

state, and the outgoing radiation is obtained by projection of this onto the former state.
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Figure 1: Penrose diagram of for the black hole formation and evaporation processes [9]. The

HBC denotes the Hawking boundary conditions at the event horizon and the FBC denotes the

final-state boundary condition inside the black hole. J+ and J− are the future and the past null

infinity, respectively.

However if one took a state in which a single boson is excited outside of the black hole as

the Hawking boundary condition then it too could be written as a maximally entangled

state on Hin and Hout - but the state of outgoing radiation that one would obtain via the

FBC is different from the state obtained from the vacuum state. Hence one obtains the

result that the final outgoing particle state for a black hole evaporation is dependent on

the Hawking boundary condition.

We assume that the quantum state of the collapsing matter belongs to a Hilbert space

HM with dimension N and |n〉M be the initial quantum state of the collapsing matter.

It is also assumed that |n〉M belongs to the set of orthonormal basis {|l〉M} for HM . The

Hilbert space of fluctuations on the background spacetime for black hole formation and

evaporation is separated into Hin and Hout which contain quantum states localized inside

and outside the event horizon, respectively. In HM proposal, the HBC is assumed to be the

Unruh vacuum state |Φ0〉in⊗out belonging to Hin ⊗ Hout in a micro-canonical form [4 – 7]:

|Φ0〉in⊗out =
1√
N

N
∑

l=1

|l〉in ⊗ |l〉out , (1)

where {|l〉in} and {|l〉out} are orthonormal bases for Hin and Hout , respectively. The final-

state boundary condition (FBC) imposed at the singularity requires a maximally entangled

quantum state in HM ⊗ Hin which is called the final boundary state and is given by

M⊗in〈Ψ| =
1√
N

N
∑

l=1

M 〈l| ⊗ in〈l|(S ⊗ I) , (2)
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Figure 2: The Kruskal extension of the Schwarzschild spacetime [9, 13]. In the region I, null

asymptotes H+ and H
−

act as the future and the past horizon, respectively. The boundary lines

labeled J+ and J− are the future and the past null infinity, respectively, and i0 is the spacelike

infinity.

where S is a unitary transformation. The initial matter state |n〉M evolves into a state in

HM ⊗Hin ⊗Hout under HBC, which is given by |Ψ0〉M⊗in⊗out = |n〉M ⊗|Φ0〉in⊗out . Then

the transformation from the quantum state of collapsing matter to the state of outgoing

Hawking radiation is given by the following final state projection [6]

|φ0〉out = M⊗in〈Ψ|Ψ0〉M⊗in⊗out =
∑

i

M 〈i|S|n〉M |i〉out , (3)

where right side of eq. (3) is properly normalized. Let’s assume that the orthonormal bases

{|i〉out} and {|l〉M} are related by the unitary transformation T ′, then one can easily show

that out〈i|T ′|n〉M = δi,n The quantum state of the collapsing matter is transferred to the

state of the outgoing Hawking radiation with the fidelity defined by

f0 = |out〈φ0|T ′|n〉M |2 = |M 〈n|S|n〉M |2. (4)

I would like to note that we can also regard T ′ as a tunnelling Hamiltonian [10] and

the evaporation rate will be proportional to 2π
~

f0.

Now we consider the case of imposing the Unruh excited state as the HBC on the black

hole evaporation problem. The Unruh vacuum state is evolved unitarity from the vacuum

state defined in the far past such as the past null infinity J− [4] (Fig. 2). Let’s denote |0−〉

– 3 –



J
H
E
P
0
3
(
2
0
0
7
)
0
2
1

and a as the vacuum state and the annihilation operator of a particle, respectively, at the

past null infinity [15], and V is the unitary operator responsible for the evolution of the

vacuum state |0−〉 . Then, we have

|Φ0〉in⊗out = V |0−〉 (5)

with a|0−〉 = 0.

We now define the one-particle state with a finite energy at the past null infinity by

|1−〉 which is given by

|1−〉 = a†|0−〉. (6)

Then the unitary evolution of this one-particle state at the future null infinity is given by

V |1−〉 = V a†|0−〉
= V a†V −1V |0−〉
= V a†V −1|Φ0〉in⊗out. (7)

The Unruh excited state at the future null infinity is then obtained by applying the Bo-

goliubov transformation [9, 11 – 13] on the Unruh vacuum state and is given by

|Φ1〉in⊗out = V |1−〉
= C(N)(

√
Nb

†
out −

√
N − 1bin)|Φ0〉in⊗out

=

√

2

N2 − 1

N
∑

i=1

√
i + 1|i〉in ⊗ |i + 1〉out

=

√

2

N2 − 1
b
†
out

∑

i

|i〉in ⊗ |i〉out

=

√

2

N2 − 1
b
†
out|Φ0〉in⊗out , (8)

where b
†
out is the boson creation operator outside the black hole, bin is the boson annihilation

operator inside the black hole, and C(N) is the normalization factor. At later times one

can choose a spacelike slice that goes through the future horizon. The horizon divides this

spacelike hypersurface into two parts, one inside and one outside the horizon [4]. As a

result, the Hilbert space can be separated into two parts, Hin and Hout which contain

wave functions localized inside or ouside the horizon. Here the operator b
†
out corresponds

to the operater b† of Parker’s work [15] which operates on a particle at the future null

infinity. On the other hand, the operator bin annihilates a particle incoming at the future

horizon H+ corresponding to the operator c of reference [15]. In eq. (8), we assumed the

density operator ρ1 out ≡ Trin(|Φ1〉in⊗out〈Φ1|) has a unit trace.

Here the mathematical form of the Bogoliubov transformation in a micro-canonical en-

semble V a†V −1 = C(N)(
√

Nb
†
out −

√
N − 1bin) is taken after the Bogoliubov transforma-

tion, a
†
K = cosh(rω)b†out − sinh(rω)bin for the Schwarzschild-Kruskal spacetime [7, 14, 15],

where the subscript K denotes the Kruskal spacetime, ω the postive frequency of the nor-

mal mode, and rω denotes the squeezing parameter [16]. In the latter, the Bogoliubov
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transformation was derived from an explicit wave packet basis and an analysis was carried

out by taking into account the real physical properties of the state. One may regard the

Bogoliubov transformation for the micro-canonical ensemble used in the paper as a limiting

case of the Bogoliubov transformation in the Schwarzschild-Kruskal spacetime for which

a timelike Killing vector associated with Kruskal coordinates is well defined for certain

regions or boundary lines. But they are not unique. For example, ∂
∂u

is a timelike Killing

vector on H− [13]. In our simplified model, the momenta or the frequencies of the particles

are not specified explicitly but we assume that the Unruh excited state contains a particle

of finite energy. From the above equation, one can see that |Φ1〉in⊗out is effectively a single

boson excited state, i.e., a state in which a particle is created outside the black hole. Then

the initial matter state |n〉M evolves into a state |Ψ1〉M⊗in⊗out in HM ⊗Hin ⊗Hout under

the HBC, which is given by |Ψ1〉M⊗in⊗out = |n〉M ⊗ |Φ1〉in⊗. The final state projection

yields

|φ1〉out = M⊗in〈Ψ|Ψ1〉M⊗in⊗out

=
1

√
∑

i(i + 1)|M 〈i|S|n〉M |2
∑

i

√
i + 1M 〈i|S|n〉M |i + 1〉out. (9)

The fidelity of information transfer f1 from the collapsing matter to the out-going

Hawking radiation is given by

f1 = |out〈φ1|T ′|n〉M |2

=
n|M 〈n − 1|S|n〉M |2

∑

i(i + 1)|M 〈i|S|n〉M |2 . (10)

Gottesman and Preskill considered the generalization of HM proposal by considering

the unitary interaction U acting on HM ⊗ Hin , i.e., the Hilbert space of the collapsing

matter and the infalling Hawking radiation [5]. In their generalization, the final boundary

state is given by

M⊗in〈Φ| =
1√
N

N
∑

l=1

M 〈l| ⊗ in〈l|(S ⊗ I)U , (11)

where the unitary transformation U takes into account the interactions of the collapsing

matter with the quantum field fluctuations after the horizon crossing but before the arrival

at the singularity. Then one might ask the following question: Is the Unruh excited state

given by eq. (8) essentially a special case of what one would get upon the unitary interaction

between the collapsing matter and the Hawking radiation given by the generalized HM

model given by eq. (11)? Mathematically, U is acting on HM ⊗ Hin and the HBC is

prescribed on Hin ⊗ Hout so they are operating on different Hilbert spaces. Moreover, the

HBC is prepared in the infinite past and logically U is supposed to be turned on after the

HBC is prescribed. In order to answer this, we consider the following transformations;

T1 = M⊗in〈Ψ|Φ1〉in⊗out

=

√

2

N(N2 − 1)

∑

l

√
l + 1|l + 1〉outM 〈l|S, (12)
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and

T2 = M⊗in〈Φ|Φ0〉in⊗out

=
1

N

∑

i,l

|i〉outM 〈l|S(in〈l|U |i〉in). (13)

In eqs. (12) and (13), two states belong to Hin are contracted with each other. In order

to make T1 and T2 equivalent to each other, the matrix U should be of the following form;

U = IM ⊗ Uin (14)

where

(Uin)li =

√

2N(l + 1)

N2 − 1
δl+1,i (15)

Now the question is whether U is unitary or more specifically, Uin is unitary. From,

(U †
inUin)mn = n

√

2N
N2−1

δm,n , it is obvious both Uin and U are not unitary. The Unruh

vacuum state |Φ0〉in⊗out and the excited state |Φ1〉in⊗out which comprise the HBCs in Hin⊗
Hout are not unitarily equivalent to each other and therefore the unitary transformation U

which makes T1 and T2 equivalent does not exist. Exact calculations of f0 and f1 require

a detailed knowledge of the unitary transformation S, so the direct comparison would be

difficult at present. However, we can make a rough estimation using a refined HM model,

which employs a random pure state as the FBC [6]

|Ψ〉M⊗in =
∑

l

λl|l〉M ⊗ |l〉in , (16)

where λl is the Schmidt coefficient for random state whose distribution is presumed to

be known [17]. Random FBC also takes into account the stochastic interaction of the

collapsing matter and the infalling Hawking radiation [5]. Substituting eq. (16) into eq. (3)

yields,

M⊗in〈Ψ|Ψ0〉M⊗in⊗out =
∑

l,j

λ∗
l M 〈l| ⊗ in〈l|n〉M

1

N
|j〉in ⊗ |j〉out

=
λ∗

n√
N

|n〉out

= |φ̃0〉out. (17)

By normalizing |φ̃0〉out , we obtain the state of outgoing Hawking radiation, which is

given by

|φ0〉out =
λ∗

n
√

|λn|2
|n〉out. (18)

Then the fidelity of information transfer for the Unruh vacuum state is given by

f0 = |out〈φ0|T ′|n〉M |2 =
|λn|2
|λn|2

= 1. (19)
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Likewise, by substituting eq. (16) into eq. (8), we obtain

M⊗in〈Ψ|Ψ1〉M⊗in⊗out =
∑

l,j

λ∗
l M 〈l| ⊗ in〈l|n〉M

√

2(J + 1)

N2 − 1
|j〉in ⊗ |j + 1〉out

= λ∗
n

√

2(j + 1)

N2 − 1
|n + 1〉out

= |φ̃1〉out. (20)

By normalizing |φ̃1〉out, we obtain the state of outgoing Hawking radiation, which is given

by

|φ1〉out =
λ∗

n
√

|λn|2
|n + 1〉out, (21)

which is orthogonal to |φ0〉out.

The fidelity of information transfer for the Unruh excited state is then given by

f1 = |out〈φ1|T ′|n〉M |2 = (
λ∗

n

|λn|
)2|out〈n + 1|T ′|n〉M |2 = 0. (22)

In eq. (19) and eq. (22), we assumed |Φ0〉in⊗out and |Φ1〉in⊗out respectively as the HBC.

In this model, the fidelity for the information transfer from the collapsing matter to the

outgoing Hawking radiation is zero. As a result the evaporation rate may be also suppressed

when the Unruh excited state is taken as the HBC.

In general, the fidelity f1 would be in the range

0 ≤ f1 ≤ n|M 〈n − 1|S|n〉M |2
∑

i(i + 1)|M 〈i|S|n〉M |2 ≤ 1 . (23)

It would be interesting to consider if one could modify the HM proposal so that the in-

formation loss does not occur for the Unruh excited state. The answer could be yes but

since the Unruh vacuum state |Φ0〉in⊗out and the excite state |Φ1〉in⊗out are not unitarily

equivalent to each other, then the information loss may occur for the Unruh vacuum state

under a new HM proposal, i.e., the final-state boundary condition.

Now, we would like to see whether the introduction of the Unruh excited state would

cause any regularization problem. In order to do that we calculate

in⊗out〈Φ0|b†outbout|Φ0〉in⊗out and in⊗out〈Φ1|b†outbout|Φ1〉in⊗out , the latter is given by

in⊗out〈Φ1|b†outbout|Φ1〉in⊗out

=
2N

N2 − 1
in⊗out〈Φ0|boutb

†
outboutb

†
out|Φ0〉in⊗out

=
2N

N2 − 1
{in⊗out〈Φ0|Φ0〉in⊗out + 2in⊗out〈Φ0|b†outbout|Φ0〉in⊗out

+in⊗out〈Φ0|(b†outbout)
2|Φ0〉in⊗out}. (24)

By the way,

in⊗out〈Φ0|b†outbout|Φ0〉in⊗out =
1

N

∑

i

i =
N + 1

2
, (25)
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and

in⊗out〈Φ0|(b†outbout)
2|Φ0〉in⊗out =

(2N + 1)(N + 1)

6
. (26)

Substituting eqs. (25) and (26) into eq. (24), we obtain

in⊗out〈Φ1|b†outbout|Φ1〉in⊗out =
N(2N2 + 9N + 13)

3(N2 − 1)
≈ 2N

3
. (27)

Comparing eqs. (25) and (27), we can see that the Unruh excited state does not cause

any additional regularization problem as compared with the Unruh vacuum state at least

within the mathematical frame we employed in this paper.

Eqs. (22) and (23) indicate that the presence of matter near the event horizon would

suppress the transfer of information from the collapsing matter to the outgoing Hawking

radiation. As a result the evaporation of black hole may be affected by the boundary

condition as well.

The Unruh vacuum state can be described by the condition that a free fall observer

crossing the horizon long after the black hole forms would presumably see no very high

positive free fall frequency excitations [18]. On the other hand, the Unruh excited state

turns out to be the final state of the system corresponding to the state starting initially

with particles, very near the instant of the black hole formation, first studied by Wald [19].

The Unruh excited state defined by eq. (8) is mathematically equivalent to eq.(2.12) of the

reference [19].

From eqs. (7), (25) and (27), the Unruh excited state at the future null infinity in a

micro-canonical form seems to contain a particle of finite energy. Thus, we can see that the

HM proposal, especially the final state boundary condition, also allows the Unruh excited

state as a boundary condition and is consistent with the previous analysis [19, 20].

Unfortunately, changing the Hawking boundary condition of a black hole from the

Unruh vacuum state to the Unruh excited state would be nontrivial and may require

extremely high-energy excitations nonetheless. Certainly, this is beyond the capability of

near future civilization. On the other hand, in quantum optics, the excitation of the Unruh

excited state can be done by the single photon excitation of the two-mode squeezed state

[16]. The primordial black holes in the early universe submerged in a dense soup of high

energy particles might have the Unruh excited state as the HBC and as a result have longer

lifetime than the lifetime predicted by Hawking [2]. Those surviving primordial black holes

may be part of the dark matter in our universe. It has not escaped the author’s notice

that equations (4) and (10) also suggest the information exchange with a black hole [21]

may not be strictly forbidden, in principle, by modulating the HBC.
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